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Abstract Genomic selection (GS) is a cutting-
edge breeding technology that enables the prediction
and early selection of individuals based on genomic
estimated breeding values by constructing predic-
tive models. Double haploid (DH) technology has
become an efficient method for producing inbred
lines in maize, and when combined with GS, it offers
significant cost reductions through advanced data and
information management. Recent studies have dem-
onstrated the great potential and high expectations
of GS in plant breeding, particularly in maize, where
the combination of GS and DH has been successfully
applied. In this study, 2029 hybrids resulting from
crosses were grown in three representative locations,
and phenotypic values for three agronomic traits—
ear height (EH), plant height (PH), and grain yield
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(GY)—were measured. Parental genotypes were used
alongside genomic predictions to estimate hybrid
breeding values, with GY being the primary trait of
interest. A combination of traits was then employed
as a criterion for advancing hybrids to the primary
stage of testing in maize. Predicted breeding estimates
showed that the accuracy for EH and PH was approxi-
mately 0.75, while for GY, it was 0.43; GY was field
validated by including 80% of the top 243 hybrids,
measured at about 55%, with moderately high predic-
tive ability. In summary, the study demonstrates a sig-
nificant reduction in the number of crosses required
in the field based on breeding estimates, a decrease in
the need for costly multi-site primary field tests, and
an increase in breeding efficiency.

Keywords Genomic prediction - Primary test -
Agronomic traits - Breeding value - Breeding gains

Introduction

Maize (Zea mays L.) is the most successfully com-
mercialized crop globally, with widespread applica-
tion of hybrids that capitalize on heterosis. The annual
maize harvest significantly influences national food
security (Lu et al. 2020). In traditional breeding, elite
inbred lines and hybrid combinations are selected by
breeders based on their phenotypic performance in
the field. However, this process is labor-intensive and
time-consuming (Zhang et al. 2022). Many traits in
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maize are controlled by polygenes and are influenced
by external environmental factors, intrinsic genetic
factors, and genotype-environment interactions. Due
to the numerous factors affecting quantitative traits,
phenotypic performance is often unstable, making the
breeding of a commercial hybrid a process that typi-
cally takes more than five years. The future of maize
breeding will benefit greatly from the integration of
genetics, genomics, and other advanced technologies
(Yu et al. 2022). Genetic induction is the most effec-
tive method for producing haploids in maize, and the
use of haploids to breed inbred lines has become a
widely adopted practice among maize breeders world-
wide (Liu et al. 2014). The parents of hybrids are sta-
ble lines, typically produced after 6-8 generations of
continuous selfing (Jacquier et al. 2021). The applica-
tion of haploid technology has significantly reduced
the time required to develop these stable lines.

Genomic selection (GS) as a new breeding strat-
egy was first proposed by Meuwissen (2001). In
recent years, with the maturation of high-throughput
sequencing and genotyping technologies, alongside
significant reductions in cost, GS has become increas-
ingly widespread in both animal and plant breeding
(Michel et al. 2016; Zhang et al. 2017). It has been
used to enhance genetic gain in dairy cattle, dairy
goats, layer chickens, and pigs (Garcia-Ruiz et al.
2016; Samore and Fontanesi 2015; Mucha et al. 2015;
Wolc et al. 2015; Lopez et al. 2015). GS involves
estimating a large number of genetic markers across
the genome to derive different chromosomal seg-
ments or individual marker effect values (Jonas et al.
2013), accumulating the individual genomic segment
or marker effect values to obtain genomic estimated
breeding values (GEBV). Breeding values through
by the combination of genomic selection and haploid
technology for early selection shorten the breeding
process (Jonas et al. 2013), especially for complex
traits that are relatively difficult to measure, thereby
improve breeding efficiency.

Factors influencing the accuracy of genomic pre-
diction include the choice of prediction model, the
number of markers, the heritability of traits, the sam-
ple size, and the kinship relationship (Ma et al. 2021;
Alemu et al. 2024). Genomic models commonly
used in breeding work today include genomic-BLUP
(GBLUP), ridge regression best linear unbiased pre-
dictions (rrBLUP), Bayes methods, reproducing ker-
nel Hilbert spaces regression (RKHS) and relevance
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vector machine (RVM) (Gianola D et al. 2008).
Among these models, ridge regression best linear
unbiased predictions (rrBLUP) and genomic-BLUP
(GBLUP) are the most frequently employed in breed-
ing programs (Heslot et al. 2012).

Currently, GS is widely used for predicting maize
traits such as yield, grain nutrition, and growth and
development characteristics (Liu et al. 2018; Cui et al.
2020; Zhang et al. 2019; Guo et al. 2020). Predicting
traits in hybrids is more practical for production pur-
poses than predicting genomic values for inbred lines.
In the primary stage of maize hybrid testing, open
pollination is typically used, with a male parent that
has good combining ability serving as the tester and a
large number of DH or phenotypically superior inbred
lines serving as the female parents. This process gen-
erates a large number of first-generation hybrids for
initial testing. However, planting all of these hybrids
for testing would require substantial manpower and
resources. If selection could be based on genomic
predictions, it would significantly reduce fieldwork
and enhance breeding efficiency. With this in mind,
in the primary testing stage of maize hybrids, we used
2029 hybrids as genetic material with different pro-
portions of training populations for GS of ear height
(EH), plant height (PH), and grain yield (GY), and
field-validated them to compare the accuracy of the
predictions.

Materials and methods

Genetic materials, phenotype evaluation, and
heritability estimation

In this study, one tester and 2029 DH lines were used
for open pollination, resulting in 2029 F1 hybrids.
The tester belongs to the non-stiff-stick (NSS) sub-
group, an while the DH lines are from the stiff stalk
(SS) subgroup. The 2029 hybrids were planted in
randomized complete blocks across three locations:
Changling, Dehui, and Gongzhuling. The hybrids
were sown using two seeds per hole in a single plot,
5 m long, 4500 plants per acre. Data on EH, PH,
and GY were collected at each location for genomic
prediction. EH and PH data were measured with a
straightedge in centimeters; while GY was calculated
as plot yield converted to standard moisture in pound.
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Phenotypic data from the 2029 hybrids were ana-
lyzed using META-R software, which included cal-
culations for best linear unbiased prediction (BLUP),
broad-sense heritability (H?), and the coefficient of
variation. H? was estimated based on the mean values
of the entries within the trial. Although only one rep-
licate was planted at each site, the values measured
at the three locations were treated as three replicates
when calculating BLUP. H? was estimated from the
mean value of the entries in the experiment. The H?
based on the mean value of enrolment within the trial
was estimated as follows:

s %
H? =

o2 2
o2+ £ 4+ =
8 n, n,n,

e e'r

where aﬁ, c2,and a:e are the genotypic variance, error
variance, and genotype-by-environment interaction
variance, respectively, and n, and n, are the numbers
of replications and environments, respectively. Here,
n, has a value of 3 and n, has a value of 1.

Genotyping and quality control

Leaf samples of parental lines were collected before
pollination, DNA was extracted by CTAB, and geno-
typing was carried out by the GBS platform (Elshire
et al. 2011). The parental lines, including lines and
tester, around 11,200 SNPs with known physical loca-
tions were identified for each genotyped material, and
the SNP marker dataset was filtered in TASSEL ver-
sion 5.0 for a minor allele frequency (MAF) of 0.05,
the missing rate below 20% and a heterozygosity rate
below 10%. After filtering, 9300 SNPs were selected
for further genetic analyses.

SNP distribution across the whole maize genome

The distribution of SNPs in the genome is one of
the indicators of the quality of the quality of geno-
type testing. A package named RIdeogram (Hao
et al. 2020), written in R programming, was used to
assess the distribution of SNPs. The plot of the SNP
distribution was drawn using the ideogram function.
The customized R scripts to plot the heatmap of the
SNP distribution on maize chromosomes using the
HapMap format input dataset were provided (https://

aozhangchina.github.io/R/chromesomeheatmapTool/
ChromesomeHeatmap.html).

Representation of the environment

In this study, a large number of genotypes were tested
across a wide range of environments. The occurrence
of the genotype (G) by environment (E) interac-
tion (GEI) effect further complicates the selection of
superior genotypes for a target population of environ-
ments. Here, we used the statistical methods of addi-
tive main effects and multiplicative interaction anal-
yses (AMMI). The AMMI analysis has been shown
to be effective because it captures a large portion of
the GXE sum of squares, clearly separating main and
interaction effects. Theses analyses were estimated
using GEA-R software. The basic model is:

N
Yi=p+g +e+ ZN:IT”yinéj” +¢g;

where Y, is the yield of the i — th genotype (i=1,..,I)
in the j—th environment (j=1,..,J); u is the grand
mean; g; and ¢; are the genotype and environment
deviations from the grand mean, respectively; T, is
the eigenvalue of the PC analysis axis n; y,, and 6,, are
the genotype and environment principal components
scores for axis n; N is the number of principal com-

ponents retained in the model and ¢;; is the error term.

Genomic prediction models

Genomic prediction of breeding values for hybrids,
genotypes of hybrids were synthesized by testing the
genotypes of the parents, hybrid genotype synthesis
first transformed the single base representation into
a two base representation and then synthesized the
four-base form of the hybrid. Finally, each material
was assigned a value based on the proportion of A at
each locus.

The genomic prediction model used was the rrB-
LUP commonly used in plant breeding, which is an
indirect prediction method. rfBLUP is a multiple
genomic information prediction method based on a
Bayesian framework. The rrBLUP model assumes
homogenous variance of all markers and shrinks all
marker effects equally to zero. rrBLUP is equivalent
to BLUP and uses the realized relationship matrix
estimated from the markers. The genomic prediction
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analysis was performed using the rrBLUP package
(Endelman 2011).
The classical rrBLUP model is as follows:

m
y=Xﬂ+ZZig,-+e
i=l

where y is the phenotype vector, X is the fixed effect
coefficient matrix, whose length is the number of
individuals in the training group, and the element val-
ues are all vectors of 1; f is the fixed effect, i.e., it
is the mean value of the training group’s phenotype;
Z; is the vector of digitised genotypes of the ith locus
(e.g., coded as {0,1,2} or {—1,0,1} or something like
that, does it make a difference in different coding
styles? But rrBLUP must be {—1,0,1} coding mode),
the sum of which is the marker coding association
matrix; g; is the ith locus effect value, which needs
to be estimated according to the model as a vector of
molecular marker effects; and e is the residual error
obeying the distribution N~ (0, I,?).

The use of tenfold cross validation repeated 100
times was used to evaluate the performance of the
model and to calculate the prediction accuracy, which
was labelled as the correlation coefficient between the
estimated and actual phenotypic values.

Field validation

The predicted results were verified in the field, the
breeding estimates and actual measurements were
sorted respectively, and the top 12%, which corre-
sponds to the top 243 of the materials using online
network  (https://jvenn.toulouse.inra.fr/app/example.
html) for breeding estimates with the actual measured
values. These materials were promoted according to
the working criteria of the first stage of breeding test
hybridization. 80% of the 243 hybrids that were pro-
moted with actual measured values were included and
statistical analysis was conducted using EXCEL.

Results
Phenotypic analysis results and correlation analysis

As shown in Table 1, summary information on
extremes, means, genotypic variance, residuals,
broad-sense heritability, and coefficient of variation
for the agronomic traits EH, PH, and GY for the 2029
hybrids is presented. The means and medians of the
three agronomic traits were approximately equal. The
H? of EH and PH were relatively high, 0.76 and 0.79,
respectively; the H? of GY which was more affected
by the environment was 0.43. The coefficient of vari-
ation was relatively low for all three traits, with the
highest was for GY at 10.94. In summary, the phe-
notypic variation in these three traits primarily stems
from genetic factors.

The test for normal distribution based on the phe-
notypic data showed that the P-value of the EH test
was 0.6 and the P-value of the PH test was 0.5, which
is consistent with normal distribution; the P-value of
the GY test was 0.25, which is close to normal dis-
tribution. The correlation coefficients among all the
agronomic traits phenotypes reached highly signifi-
cant levels, and the correlation coefficients between
EH and the rest of the traits were 0.72 and 0.24,
respectively, while the correlation coefficient between
PH and GY was 0.38 (P <0.01) (Fig. 1).

Marker distribution

The markers in the SNP dataset were distributed
across the entire maize genome (Fig. 2). Generally,
marker density was higher at the ends of the chromo-
somes and decreased toward the centromeric regions.
Chromosomes 1, 2, and 3 showed a relative enrich-
ment of SNPs, with particularly high marker densi-
ties at the ends of chromosome 8 and the long arm
of chromosome 9. Overall, the distribution of marker
densities was relatively uniform, contributing to a
high degree of accuracy in predictions.

Tal?le. 1 Descriptive Trait Range Grand mean ~ Median  Genotype Variance ~ H* Cv®
statistics for three
ﬁgg’ﬁé’mlc traits in 2029 EH (cm)  100-169 130.68 13092 138.11 076  8.84
yories o PH (cm)  271-350 313.38 31386 182.96 079 3.97
“Broad-sense heritability;
GY (Ib) 134.18-178.12 158.37 158.64 75.99 0.43 10.94

bCoefficient of variation
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Fig. 1 Frequency distribu-
tions and correlations of
BLUP (best linear unbiased
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represent the phenotypic
distribution frequency of
EH, PH, GY. The values
above the diagonal line

are the Pearson’s correla-
tion coefficients between
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below the diagonal line are
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significant difference at the
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significant difference at the
0.01 level
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Representation of the environment

The dual-labelled plot of EH, PH, and GY (Fig. 3)
show that the varieties are evenly and consistently
distributed across the three planting sites, demonstrat-
ing the environment’s strong ability to differentiate
between varieties. The rankings of EH, PH, and GY
for each trait were inversely related between environ-
ments, indicating that the three selected sites were
non-repetitive and representative.

Predictability of agronomic traits in hybrids

In this study, the prediction model used was rrBLUP,
which is commonly used in plant breeding for three
agronomic traits: EH, PH and GY. The percentages
used for the training groups were 40%, 50%, 60%,
70%, and 80% for 100 cycles. By comparing the mean
and standard deviation of the predicted breeding val-
ues for the three agronomic traits, there was not much

160 55 60 65 70

difference in the mean values of the training popula-
tions for each proportion of the three traits; although
the results of 60%, 70% and 80% were higher, the
standard deviation of the predicted breeding values
was larger, and the standard deviation of 50% was
smaller and more stable. The best results were pre-
dicted when the training population was 50%. The
prediction accuracies for EH and PH was 0.76 and
0.75, respectively, while for GY, it was slightly lower
at 0.47 (Fig. 4).

Relationship between measured and estimated
breeding values

Based on the predicted results when the training
population was set at 50%, and in accordance with
the criteria for the initial phase of the hybridiza-
tion breeding test, the top 12% of the rankings were
selected to advance, equating to the top 243 mate-
rials for the next phase of testing. The estimated
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Fig. 2 Heat map of SNP
marker density
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Fig. 3 Dual-labelled plot of agronomic traits. Dual-label plots based on measured EH, PH, and GY, with L1 representing Changling,
L2 representing Dehui, and L3 representing Gongzhuling

breeding values were then compared with the slightly lower. These results indicate the high accu-
actual measured values, as shown in Fig. 5. The racy of the breeding estimates predicted using this
overlap between the estimated breeding values model.

and the actual measurements was more than 50%
for both EH and PH, while the overlap for GY was
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Fig. 4 Box plot of the accuracy of prediction of agronomic traits of hybrids. Accuracy of predicting EH, PH and GY based on train-

ing populations of 40%, 50%, 60%, 70% and 80%, respectively

Pre breed  Observed Pre breed

131 112 131 114

Observed Pre breed Observed

114 168 75 168

Fig. 5 Wayne of measured versus estimated breeding value promotion results. EH, PH and GY, respectively

Field population validation and multiple trait analysis

In the primary testing phase of maize hybrids, the
top 12% of hybrids in the test rankings advance
to the next stage, meaning that 243 out of 2029
hybrids move forward. The best predicted results
were obtained when the training population was set
at 50%. When the predicted GY ranking is around
the top 55%, it can include 80% of the hybrids that
rank in the top 243 in actual measurements. Similarly,
when the predicted EH and PH rankings are around
the top 26%, it can include 80% of the hybrids that
rank in the top 243 in actual measurements (Fig. 6).
Advancement to the next stage is primarily based on
GY data, with other traits also considered. The top
243 hybrids based on GY rankings were selected for
advancement, showing a high overlap with the rank-
ings for EH and PH.

The cost of testing each hybrid in the primary
stage is about 20 yuan, with the total cost of plant-
ing at three locations reaching around 120,000
yuan. By predicting hybrid phenotypes through

60 -

(o]
o
T

N
o
T

w
o
T

Percentage(%)

N
o
T

-
o
T

0 T
EH PH Yield

Trait

Fig. 6 Field validation of population size

breeding estimates—encompassing 80% of the top
243 actual measurement rankings—this method
saves half the cost and preserves parental genotype
data for future use.
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Discussion

Importance of the primary testing stage of maize
hybrids

A critical aspect of maize breeding is field test-
ing (Meng et al. 2019), and the development of
new maize varieties must undergo a series of field
tests, including primary field tests, intermediate and
advanced field tests, regional trials, and production
trials. Among these, primary field tests are especially
crucial. At this stage, maize yield and the perfor-
mance of various traits result from the interaction of
multiple influencing factors under complex field con-
ditions. The only way to accurately and objectively
predict the real-world performance of these hybrids is
through primary field testing.

Conventional breeding involves examining numer-
ous agronomic traits, with GY being the primary
focus. GY traits are quantitative, influenced by both
genetic and environmental factors, and are interre-
lated with other traits, often constraining each other
(Ren et al. 2019). To select varieties with strong over-
all resistance and high yield, yield and all associated
traits must be considered together. To obtain accurate
results under field trial conditions, primary field tri-
als are conducted in various natural environments,
accounting for the complexity of climate, soil quality,
and other factors that present significant challenges.
Environmental factors, such as location, climate, and
soil, undeniably influence yield, underscoring the
importance of field trials (Duvick et al. 2004).

Factors affecting the accuracy of GS

GS is a promising tool in genomics that can predict
the phenotypes of genotypic hybrids without the need
for actual phenotypic measurements. The effective-
ness of GS can be evaluated through its genomic
prediction capabilities, which offer moderate to high
accuracy, saving both time and costs. Predictive abil-
ity was estimated using the genotypic data of parent
lines for synthetic hybrids and the phenotypic data of
measured hybrids (Li et al. 2021). Therefore, it is cru-
cial that the SNP dataset is evenly distributed across
the maize genome and that the measurements are
accurate.

Prediction accuracy is an important condi-
tion affecting genome-wide selection, and it was

@ Springer

compared by observing the correlation between phe-
notypes and predicted GEBVs (Xu 2017). There are
now many GS models to choose from, and models
from Bayesian (Technow and Melchinger 2013), and
machine learning (Ogutu et al. 2012) approaches have
been frequently used in plant breeding since their
emergence. Although great efforts have been put into
the development of each of these models, none of the
methods is absolutely superior among different crops
or traits (Heslot et al. 2012). In practice, rrBLUP has
been accepted as a predictor of GY, EH and PH traits
in F1 of DH and test species. Therefore, we chose
rrBLUP, a relatively computationally fast method, for
this study.

Application of GS in breeding

In GS studies, the size of the group is also one of the
important factors affecting the predictive ability (Liu
et al. 2018). Using appropriately sized populations
enhances the accuracy of genomic predictions. In this
study, the parental material, NSS inbred lines, was
used as the tester, and 2029 SS DH lines were used
for open pollination, resulting in a population of 2029
hybrids. This population size was moderate and suit-
able for accurate predictions.

Studies have shown that prediction accuracy is
first affected by the heritability of the target trait, with
higher heritability is associated with the higher accu-
racy (Wang et al. 2015). The factors that influence
yield in maize hybrids are complex and susceptible to
non-genetic factors such as the environment, leading to
lower heritability. However, some studies have found
that this does not mean that GS is inefficient (Wang
et al. 2024). In the present study, the H> for GY was
0.43 influenced by various factors. The results showed
that the best results were obtained with a training group
of 50%, with the mean value of the predicted breeding
values of GY for the main traits being 0.47, reaching a
medium level; the mean values of the predicted breed-
ing values of EH and PH for the other agronomic traits
were 0.76 and 0.75, respectively, all of them reached
the medium to high level. The top 12% (243 hybrids)
of the primary field test rankings advanced to the next
stage of testing, with the rankings of the breeding esti-
mates of GY prediction as the evaluating indicator. In
the comprehensive comparison of the various agro-
nomic traits for the field validation of the predicted GY
rankings, when the predicted GY ranking is around the
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top 55%, it can include 80% of the hybrids that rank in
the top 243 in actual measurements, indicating the very
high accuracy of the prediction.

Despite the slightly heritability for GY, the predic-
tion of GY by validating rrBLUP was also effective.
The use of rrfBLUP to predict hybrid breeding values
can also be shown to be a very effective way.

Low investment and high return are key in breeding,
making it crucial for breeders to cull certain combina-
tions before conducting field trials. GS is becoming
increasingly important in commercial maize breeding,
as it shortens the breeding cycle, increases breeding
efficiency, improves multi-trait selection, and facilitates
intelligent breeding. This study explored the practical
application of GS in breeding and compared it with
field validation results, making it highly relevant for
real-world application. As genome sequencing technol-
ogy advances and costs decrease, the application of GS
in commercial breeding is expected to become more
widespread, profoundly impacting the future of maize
breeding.
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