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(GY)—were measured. Parental genotypes were used 
alongside genomic predictions to estimate hybrid 
breeding values, with GY being the primary trait of 
interest. A combination of traits was then employed 
as a criterion for advancing hybrids to the primary 
stage of testing in maize. Predicted breeding estimates 
showed that the accuracy for EH and PH was approxi-
mately 0.75, while for GY, it was 0.43; GY was field 
validated by including 80% of the top 243 hybrids, 
measured at about 55%, with moderately high predic-
tive ability. In summary, the study demonstrates a sig-
nificant reduction in the number of crosses required 
in the field based on breeding estimates, a decrease in 
the need for costly multi-site primary field tests, and 
an increase in breeding efficiency.
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Introduction

Maize (Zea mays L.) is the most successfully com-
mercialized crop globally, with widespread applica-
tion of hybrids that capitalize on heterosis. The annual 
maize harvest significantly influences national food 
security (Lu et al. 2020). In traditional breeding, elite 
inbred lines and hybrid combinations are selected by 
breeders based on their phenotypic performance in 
the field. However, this process is labor-intensive and 
time-consuming (Zhang et  al. 2022). Many traits in 

Abstract  Genomic selection (GS) is a cutting-
edge breeding technology that enables the prediction 
and early selection of individuals based on genomic 
estimated breeding values by constructing predic-
tive models. Double haploid (DH) technology has 
become an efficient method for producing inbred 
lines in maize, and when combined with GS, it offers 
significant cost reductions through advanced data and 
information management. Recent studies have dem-
onstrated the great potential and high expectations 
of GS in plant breeding, particularly in maize, where 
the combination of GS and DH has been successfully 
applied. In this study, 2029 hybrids resulting from 
crosses were grown in three representative locations, 
and phenotypic values for three agronomic traits—
ear height (EH), plant height (PH), and grain yield 
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maize are controlled by polygenes and are influenced 
by external environmental factors, intrinsic genetic 
factors, and genotype-environment interactions. Due 
to the numerous factors affecting quantitative traits, 
phenotypic performance is often unstable, making the 
breeding of a commercial hybrid a process that typi-
cally takes more than five years. The future of maize 
breeding will benefit greatly from the integration of 
genetics, genomics, and other advanced technologies 
(Yu et al. 2022). Genetic induction is the most effec-
tive method for producing haploids in maize, and the 
use of haploids to breed inbred lines has become a 
widely adopted practice among maize breeders world-
wide (Liu et al. 2014). The parents of hybrids are sta-
ble lines, typically produced after 6–8 generations of 
continuous selfing (Jacquier et al. 2021). The applica-
tion of haploid technology has significantly reduced 
the time required to develop these stable lines.

Genomic selection (GS) as a new breeding strat-
egy was first proposed by Meuwissen (2001). In 
recent years, with the maturation of high-throughput 
sequencing and genotyping technologies, alongside 
significant reductions in cost, GS has become increas-
ingly widespread in both animal and plant breeding 
(Michel et  al. 2016; Zhang et  al. 2017). It has been 
used to enhance genetic gain in dairy cattle, dairy 
goats, layer chickens, and pigs (García-Ruiz et  al. 
2016; Samore and Fontanesi 2015; Mucha et al. 2015; 
Wolc et  al. 2015; López et  al. 2015). GS involves 
estimating a large number of genetic markers across 
the genome to derive different chromosomal seg-
ments or individual marker effect values (Jonas et al. 
2013), accumulating the individual genomic segment 
or marker effect values to obtain genomic estimated 
breeding values (GEBV). Breeding values through 
by the combination of genomic selection and haploid 
technology for early selection shorten the breeding 
process (Jonas et  al. 2013), especially for complex 
traits that are relatively difficult to measure, thereby 
improve breeding efficiency.

Factors influencing the accuracy of genomic pre-
diction include the choice of prediction model, the 
number of markers, the heritability of traits, the sam-
ple size, and the kinship relationship (Ma et al. 2021; 
Alemu et  al. 2024). Genomic models commonly 
used in breeding work today include genomic-BLUP 
(GBLUP), ridge regression best linear unbiased pre-
dictions (rrBLUP), Bayes methods, reproducing ker-
nel Hilbert spaces regression (RKHS) and relevance 

vector machine (RVM) (Gianola D et  al. 2008). 
Among these models, ridge regression best linear 
unbiased predictions (rrBLUP) and genomic-BLUP 
(GBLUP) are the most frequently employed in breed-
ing programs (Heslot et al. 2012).

Currently, GS is widely used for predicting maize 
traits such as yield, grain nutrition, and growth and 
development characteristics (Liu et al. 2018; Cui et al. 
2020; Zhang et al. 2019; Guo et al. 2020). Predicting 
traits in hybrids is more practical for production pur-
poses than predicting genomic values for inbred lines. 
In the primary stage of maize hybrid testing, open 
pollination is typically used, with a male parent that 
has good combining ability serving as the tester and a 
large number of DH or phenotypically superior inbred 
lines serving as the female parents. This process gen-
erates a large number of first-generation hybrids for 
initial testing. However, planting all of these hybrids 
for testing would require substantial manpower and 
resources. If selection could be based on genomic 
predictions, it would significantly reduce fieldwork 
and enhance breeding efficiency. With this in mind, 
in the primary testing stage of maize hybrids, we used 
2029 hybrids as genetic material with different pro-
portions of training populations for GS of ear height 
(EH), plant height (PH), and grain yield (GY), and 
field-validated them to compare the accuracy of the 
predictions.

Materials and methods

Genetic materials, phenotype evaluation, and 
heritability estimation

In this study, one tester and 2029 DH lines were used 
for open pollination, resulting in 2029 F1 hybrids. 
The tester belongs to the non-stiff-stick (NSS) sub-
group, an while the DH lines are from the stiff stalk 
(SS) subgroup. The 2029 hybrids were planted in 
randomized complete blocks across three locations: 
Changling, Dehui, and Gongzhuling. The hybrids 
were sown using two seeds per hole in a single plot, 
5  m long, 4500 plants per acre. Data on EH, PH, 
and GY were collected at each location for genomic 
prediction. EH and PH data were measured with a 
straightedge in centimeters; while GY was calculated 
as plot yield converted to standard moisture in pound.
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Phenotypic data from the 2029 hybrids were ana-
lyzed using META-R software, which included cal-
culations for best linear unbiased prediction (BLUP), 
broad-sense heritability (H2), and the coefficient of 
variation. H2 was estimated based on the mean values 
of the entries within the trial. Although only one rep-
licate was planted at each site, the values measured 
at the three locations were treated as three replicates 
when calculating BLUP. H2 was estimated from the 
mean value of the entries in the experiment. The H2 
based on the mean value of enrolment within the trial 
was estimated as follows:

where �2

g
 , �2,and �2

ge
 are the genotypic variance, error 

variance, and genotype-by-environment interaction 
variance, respectively, and nr and ne are the numbers 
of replications and environments, respectively. Here, 
nr has a value of 3 and ne has a value of 1.

Genotyping and quality control

Leaf samples of parental lines were collected before 
pollination, DNA was extracted by CTAB, and geno-
typing was carried out by the GBS platform (Elshire 
et  al. 2011). The parental lines, including lines and 
tester, around 11,200 SNPs with known physical loca-
tions were identified for each genotyped material, and 
the SNP marker dataset was filtered in TASSEL ver-
sion 5.0 for a minor allele frequency (MAF) of 0.05, 
the missing rate below 20% and a heterozygosity rate 
below 10%. After filtering, 9300 SNPs were selected 
for further genetic analyses.

SNP distribution across the whole maize genome

The distribution of SNPs in the genome is one of 
the indicators of the quality of the quality of geno-
type testing. A package named RIdeogram (Hao 
et al. 2020), written in R programming, was used to 
assess the distribution of SNPs. The plot of the SNP 
distribution was drawn using the ideogram function. 
The customized R scripts to plot the heatmap of the 
SNP distribution on maize chromosomes using the 
HapMap format input dataset were provided (https://​
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aozha​ngchi​na.​github.​io/R/​chrom​esome​heatm​apTool/​
Chrom​esome​Heatm​ap.​html).

Representation of the environment

In this study, a large number of genotypes were tested 
across a wide range of environments. The occurrence 
of the genotype (G) by environment (E) interac-
tion (GEI) effect further complicates the selection of 
superior genotypes for a target population of environ-
ments. Here, we used the statistical methods of addi-
tive main effects and multiplicative interaction anal-
yses (AMMI). The AMMI analysis has been shown 
to be effective because it captures a large portion of 
the GxE sum of squares, clearly separating main and 
interaction effects. Theses analyses were estimated 
using GEA-R software. The basic model is:

where Yij is the yield of the i − th genotype (i = 1,..,I) 
in the j − th environment (j = 1,..,J); � is the grand 
mean; gi and ej are the genotype and environment 
deviations from the grand mean, respectively; τn is 
the eigenvalue of the PC analysis axis n; �in and �jn are 
the genotype and environment principal components 
scores for axis n; N is the number of principal com-
ponents retained in the model and �ij is the error term.

Genomic prediction models

Genomic prediction of breeding values for hybrids, 
genotypes of hybrids were synthesized by testing the 
genotypes of the parents, hybrid genotype synthesis 
first transformed the single base representation into 
a two base representation and then synthesized the 
four-base form of the hybrid. Finally, each material 
was assigned a value based on the proportion of A at 
each locus.

The genomic prediction model used was the rrB-
LUP commonly used in plant breeding, which is an 
indirect prediction method. rrBLUP is a multiple 
genomic information prediction method based on a 
Bayesian framework. The rrBLUP model assumes 
homogenous variance of all markers and shrinks all 
marker effects equally to zero. rrBLUP is equivalent 
to BLUP and uses the realized relationship matrix 
estimated from the markers. The genomic prediction 

Yij = � + gi + ej +
∑N

N=1
τn�in�jn + �ij

https://aozhangchina.github.io/R/chromesomeheatmapTool/ChromesomeHeatmap.html
https://aozhangchina.github.io/R/chromesomeheatmapTool/ChromesomeHeatmap.html
https://aozhangchina.github.io/R/chromesomeheatmapTool/ChromesomeHeatmap.html
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analysis was performed using the rrBLUP package 
(Endelman 2011).

The classical rrBLUP model is as follows:

where y is the phenotype vector, X is the fixed effect 
coefficient matrix, whose length is the number of 
individuals in the training group, and the element val-
ues are all vectors of 1; � is the fixed effect, i.e., it 
is the mean value of the training group’s phenotype; 
Zi is the vector of digitised genotypes of the ith locus 
(e.g., coded as {0,1,2} or {−1,0,1} or something like 
that, does it make a difference in different coding 
styles? But rrBLUP must be {−1,0,1} coding mode), 
the sum of which is the marker coding association 
matrix; gi is the ith locus effect value, which needs 
to be estimated according to the model as a vector of 
molecular marker effects; and e is the residual error 
obeying the distribution N ~ (0, Iσe

2).
The use of tenfold cross validation repeated 100 

times was used to evaluate the performance of the 
model and to calculate the prediction accuracy, which 
was labelled as the correlation coefficient between the 
estimated and actual phenotypic values.

Field validation

The predicted results were verified in the field, the 
breeding estimates and actual measurements were 
sorted respectively, and the top 12%, which corre-
sponds to the top 243 of the materials using online 
network (https://​jvenn.​toulo​use.​inra.​fr/​app/​examp​le.​
html) for breeding estimates with the actual measured 
values. These materials were promoted according to 
the working criteria of the first stage of breeding test 
hybridization. 80% of the 243 hybrids that were pro-
moted with actual measured values were included and 
statistical analysis was conducted using EXCEL.

y = X� +

m
∑

i=1

Zigi + e

Results

Phenotypic analysis results and correlation analysis

As shown in Table  1, summary information on 
extremes, means, genotypic variance, residuals, 
broad-sense heritability, and coefficient of variation 
for the agronomic traits EH, PH, and GY for the 2029 
hybrids is presented. The means and medians of the 
three agronomic traits were approximately equal. The 
H2 of EH and PH were relatively high, 0.76 and 0.79, 
respectively; the H2 of GY which was more affected 
by the environment was 0.43. The coefficient of vari-
ation was relatively low for all three traits, with the 
highest was for GY at 10.94. In summary, the phe-
notypic variation in these three traits primarily stems 
from genetic factors.

The test for normal distribution based on the phe-
notypic data showed that the P-value of the EH test 
was 0.6 and the P-value of the PH test was 0.5, which 
is consistent with normal distribution; the P-value of 
the GY test was 0.25, which is close to normal dis-
tribution. The correlation coefficients among all the 
agronomic traits phenotypes reached highly signifi-
cant levels, and the correlation coefficients between 
EH and the rest of the traits were 0.72 and 0.24, 
respectively, while the correlation coefficient between 
PH and GY was 0.38 (P < 0.01) (Fig. 1).

Marker distribution

The markers in the SNP dataset were distributed 
across the entire maize genome (Fig.  2). Generally, 
marker density was higher at the ends of the chromo-
somes and decreased toward the centromeric regions. 
Chromosomes 1, 2, and 3 showed a relative enrich-
ment of SNPs, with particularly high marker densi-
ties at the ends of chromosome 8 and the long arm 
of chromosome 9. Overall, the distribution of marker 
densities was relatively uniform, contributing to a 
high degree of accuracy in predictions.

Table 1   Descriptive 
statistics for three 
agronomic traits in 2029 
hybrids
a Broad-sense heritability;
b Coefficient of variation

Trait Range Grand mean Median Genotype Variance H2a CVb

EH (cm) 100–169 130.68 130.92 138.11 0.76 8.84
PH (cm) 271–350 313.38 313.86 182.96 0.79 3.97
GY (lb) 134.18–178.12 158.37 158.64 75.99 0.43 10.94

https://jvenn.toulouse.inra.fr/app/example.html
https://jvenn.toulouse.inra.fr/app/example.html
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Representation of the environment

The dual-labelled plot of EH, PH, and GY (Fig.  3) 
show that the varieties are evenly and consistently 
distributed across the three planting sites, demonstrat-
ing the environment’s strong ability to differentiate 
between varieties. The rankings of EH, PH, and GY 
for each trait were inversely related between environ-
ments, indicating that the three selected sites were 
non-repetitive and representative.

Predictability of agronomic traits in hybrids

In this study, the prediction model used was rrBLUP, 
which is commonly used in plant breeding for three 
agronomic traits: EH, PH and GY. The percentages 
used for the training groups were 40%, 50%, 60%, 
70%, and 80% for 100 cycles. By comparing the mean 
and standard deviation of the predicted breeding val-
ues for the three agronomic traits, there was not much 

difference in the mean values of the training popula-
tions for each proportion of the three traits; although 
the results of 60%, 70% and 80% were higher, the 
standard deviation of the predicted breeding values 
was larger, and the standard deviation of 50% was 
smaller and more stable. The best results were pre-
dicted when the training population was 50%. The 
prediction accuracies for EH and PH was 0.76 and 
0.75, respectively, while for GY, it was slightly lower 
at 0.47 (Fig. 4).

Relationship between measured and estimated 
breeding values

Based on the predicted results when the training 
population was set at 50%, and in accordance with 
the criteria for the initial phase of the hybridiza-
tion breeding test, the top 12% of the rankings were 
selected to advance, equating to the top 243 mate-
rials for the next phase of testing. The estimated 

Fig. 1   Frequency distribu-
tions and correlations of 
BLUP (best linear unbiased 
prediction) as phenotype 
values were calculated 
from the EH, PH and GY. 
The plots on the diagonal 
represent the phenotypic 
distribution frequency of 
EH, PH, GY. The values 
above the diagonal line 
are the Pearson’s correla-
tion coefficients between 
every two traits. The values 
below the diagonal line are 
scattered plots for every 
two traits. *Represents a 
significant difference at the 
0.05 level; ** represents a 
significant difference at the 
0.01 level



	 Euphytica (2024) 220:169169  Page 6 of 10

Vol:. (1234567890)

breeding values were then compared with the 
actual measured values, as shown in Fig.  5. The 
overlap between the estimated breeding values 
and the actual measurements was more than 50% 
for both EH and PH, while the overlap for GY was 

slightly lower. These results indicate the high accu-
racy of the breeding estimates predicted using this 
model.

Fig. 2   Heat map of SNP 
marker density

Fig. 3   Dual-labelled plot of agronomic traits. Dual-label plots based on measured EH, PH, and GY, with L1 representing Changling, 
L2 representing Dehui, and L3 representing Gongzhuling
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Field population validation and multiple trait analysis

In the primary testing phase of maize hybrids, the 
top 12% of hybrids in the test rankings advance 
to the next stage, meaning that 243 out of 2029 
hybrids move forward. The best predicted results 
were obtained when the training population was set 
at 50%. When the predicted GY ranking is around 
the top 55%, it can include 80% of the hybrids that 
rank in the top 243 in actual measurements. Similarly, 
when the predicted EH and PH rankings are around 
the top 26%, it can include 80% of the hybrids that 
rank in the top 243 in actual measurements (Fig. 6). 
Advancement to the next stage is primarily based on 
GY data, with other traits also considered. The top 
243 hybrids based on GY rankings were selected for 
advancement, showing a high overlap with the rank-
ings for EH and PH.

The cost of testing each hybrid in the primary 
stage is about 20 yuan, with the total cost of plant-
ing at three locations reaching around 120,000 
yuan. By predicting hybrid phenotypes through 

breeding estimates—encompassing 80% of the top 
243 actual measurement rankings—this method 
saves half the cost and preserves parental genotype 
data for future use.

Fig. 4   Box plot of the accuracy of prediction of agronomic traits of hybrids. Accuracy of predicting EH, PH and GY based on train-
ing populations of 40%, 50%, 60%, 70% and 80%, respectively

Fig. 5   Wayne of measured versus estimated breeding value promotion results. EH, PH and GY, respectively

Fig. 6   Field validation of population size
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Discussion

Importance of the primary testing stage of maize 
hybrids

A critical aspect of maize breeding is field test-
ing (Meng et  al. 2019), and the development of 
new maize varieties must undergo a series of field 
tests, including primary field tests, intermediate and 
advanced field tests, regional trials, and production 
trials. Among these, primary field tests are especially 
crucial. At this stage, maize yield and the perfor-
mance of various traits result from the interaction of 
multiple influencing factors under complex field con-
ditions. The only way to accurately and objectively 
predict the real-world performance of these hybrids is 
through primary field testing.

Conventional breeding involves examining numer-
ous agronomic traits, with GY being the primary 
focus. GY traits are quantitative, influenced by both 
genetic and environmental factors, and are interre-
lated with other traits, often constraining each other 
(Ren et al. 2019). To select varieties with strong over-
all resistance and high yield, yield and all associated 
traits must be considered together. To obtain accurate 
results under field trial conditions, primary field tri-
als are conducted in various natural environments, 
accounting for the complexity of climate, soil quality, 
and other factors that present significant challenges. 
Environmental factors, such as location, climate, and 
soil, undeniably influence yield, underscoring the 
importance of field trials (Duvick et al. 2004).

Factors affecting the accuracy of GS

GS is a promising tool in genomics that can predict 
the phenotypes of genotypic hybrids without the need 
for actual phenotypic measurements. The effective-
ness of GS can be evaluated through its genomic 
prediction capabilities, which offer moderate to high 
accuracy, saving both time and costs. Predictive abil-
ity was estimated using the genotypic data of parent 
lines for synthetic hybrids and the phenotypic data of 
measured hybrids (Li et al. 2021). Therefore, it is cru-
cial that the SNP dataset is evenly distributed across 
the maize genome and that the measurements are 
accurate.

Prediction accuracy is an important condi-
tion affecting genome-wide selection, and it was 

compared by observing the correlation between phe-
notypes and predicted GEBVs (Xu 2017). There are 
now many GS models to choose from, and models 
from Bayesian (Technow and Melchinger 2013), and 
machine learning (Ogutu et al. 2012) approaches have 
been frequently used in plant breeding since their 
emergence. Although great efforts have been put into 
the development of each of these models, none of the 
methods is absolutely superior among different crops 
or traits (Heslot et al. 2012). In practice, rrBLUP has 
been accepted as a predictor of GY, EH and PH traits 
in F1 of DH and test species. Therefore, we chose 
rrBLUP, a relatively computationally fast method, for 
this study.

Application of GS in breeding

In GS studies, the size of the group is also one of the 
important factors affecting the predictive ability (Liu 
et  al. 2018). Using appropriately sized populations 
enhances the accuracy of genomic predictions. In this 
study, the parental material, NSS inbred lines, was 
used as the tester, and 2029 SS DH lines were used 
for open pollination, resulting in a population of 2029 
hybrids. This population size was moderate and suit-
able for accurate predictions.

Studies have shown that prediction accuracy is 
first affected by the heritability of the target trait, with 
higher heritability is associated with the higher accu-
racy (Wang et  al. 2015). The factors that influence 
yield in maize hybrids are complex and susceptible to 
non-genetic factors such as the environment, leading to 
lower heritability. However, some studies have found 
that this does not mean that GS is inefficient (Wang 
et  al. 2024). In the present study, the H2 for GY was 
0.43 influenced by various factors. The results showed 
that the best results were obtained with a training group 
of 50%, with the mean value of the predicted breeding 
values of GY for the main traits being 0.47, reaching a 
medium level; the mean values of the predicted breed-
ing values of EH and PH for the other agronomic traits 
were 0.76 and 0.75, respectively, all of them reached 
the medium to high level. The top 12% (243 hybrids) 
of the primary field test rankings advanced to the next 
stage of testing, with the rankings of the breeding esti-
mates of GY prediction as the evaluating indicator. In 
the comprehensive comparison of the various agro-
nomic traits for the field validation of the predicted GY 
rankings, when the predicted GY ranking is around the 
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top 55%, it can include 80% of the hybrids that rank in 
the top 243 in actual measurements, indicating the very 
high accuracy of the prediction.

Despite the slightly heritability for GY, the predic-
tion of GY by validating rrBLUP was also effective. 
The use of rrBLUP to predict hybrid breeding values 
can also be shown to be a very effective way.

Low investment and high return are key in breeding, 
making it crucial for breeders to cull certain combina-
tions before conducting field trials. GS is becoming 
increasingly important in commercial maize breeding, 
as it shortens the breeding cycle, increases breeding 
efficiency, improves multi-trait selection, and facilitates 
intelligent breeding. This study explored the practical 
application of GS in breeding and compared it with 
field validation results, making it highly relevant for 
real-world application. As genome sequencing technol-
ogy advances and costs decrease, the application of GS 
in commercial breeding is expected to become more 
widespread, profoundly impacting the future of maize 
breeding.
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